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Abstract

PHASE II TRIALS POWERED TO DETECT ACTIVITY IN TUMOR SUBSETS WITH

RETROSPECTIVE (OR PROSPECTIVE) USE OF PREDICTIVE MARKERS

By Grishma Seemit Sheth, M.S.
A Thesis submitted in partial fulfillment of the requirements for the degree of Masters at
Virginia Commonwealth University.

Virginia Commonwealth University, 2007

Major Director: V. RAMAKRISHNAN, PH.D.
ASSISTANT PROFESSOR, DEPARTMENT OF BIOSTATISTICS

Classical phase II trial designs assume a patient population with a homogeneous
tumor type and yield an estimate of a stochastic probability of tumor response. Clinically,
however, oncology is moving towards identifying patients who are likely to respond to
therapy using tumor subtyping based upon predictive markers. Such designs are called
targeted designs (Simon, 2004). For a given phase II trial predictive markers may be
defined prospectively (on the basis of previous results) or identified retrospectively on the
basis of analysis of responding and non-responding tumors. For the prospective case we
propose two Phase II targeted designs in which a) the trial is powered to detect the
presence of responding subtype(s) as identified either prospectively or retrospectively by

viii



ix
predictive markers or b) the trial is powered to achieve a desired precision in the smallest
subtype. Relevant parameters in such a design include the prevalence of the smallest
subtype of interest, the hypothesized response rate within that subtype, the expected total
response rate, and the targeted probabilities of type I and II errors (o and B). (The expected
total response rate is needed for design a) but not for b)). Extensions of this design to
simultaneous or sequential multiple subtyping and imperfect assays for predictive markers
will also be considered. The Phase 1I targeted design could be formulated as a single stage
or Simon two-stage design. For multiple subtyping corrections to the significance level
will be considered. Sample size calculations for different scenarios will be presented. An
implication of this approach is that phase II trials based upon classical designs are too
small. On the other hand, trials involving “reasonable” numbers of patients must target
relatively high threshold response rates within tumor subtypes. For the retrospective case
we will provide the power to detect desired rates in the subtypes and provide the sample
sizes required to achieve desired power. Retrospective analysis has the advantages that the
analysis can be “supervised” by grouping responding and non-responding tumors; and
multiple hypotheses, including hypotheses not formulated at the time of trial design, can be

tested



CHAPTER 1 Background

1.1 Clinical Trials

Clinical trials are prospective studies comparing the effect and value of an
intervention (drug or therapy) against a control (placebo or standard therapy). A properly
planned and executed clinical trial is a powerful experimental tool for assessing the
effectiveness of the intervention.

While the ultimate goal of the clinical trials is the design and analysis for the
purpose of comparing the effectiveness of one or more interventions, several steps or
phases of clinical research must occur before reaching that goal. These steps include, in
addition to the pre-clinical trials four clinical segments called Phases. The pre-clinical trial
focuses on creation of a new drug and testing it on lab animals for toxicity and efficacy.
This includes Pharmacokinetics (PK) and pharmacodynamic (PD) modeling. They are the
key tools in proper dose selection as an early stage of the phase I trial. PK attempts to
characterize the fate of the drug in the body following dosing, primarily by sampling its
concentration-time profile in the circulation. PD investigates the relationship between the
response induced by the drug and its circulating concentration. Once the drug passes the
pre-clinical stage and the appropriate dose is found the drug is then tested on humans. The
human phase of the clinical trial follows the pre-clinical trials. These phases are briefly

summarized next.



2

The first phase, called Phase I or sometimes referred as the dose finding phase,
deals with determining a dose of a drug or a regimen to understand how well it is tolerated
in a small number of individuals. The main aim here is to estimate how large a dose can be
given before unacceptable toxicity is experienced by patients. This dose is referred to as
the maximally tolerated dose (MTD). Several designs have been published to find MTD,
among which more commonly used designs are provided by Fleming (1982), O’Brien
(1979) and Piantadosi (1997).

The second phase, called Phase II trial or Safety and Efficacy Design, evaluates the
drug’s biological activity or effect on humans and may also be used to estimate the rate of
adverse events. This trial is conducted at the maximally tolerated dose is established in the
Phase I trial. Thus, the phase II design depends on the quality and adequacy of the phase I
study. Phase II studies are sometimes divided into Phase IIA and Phase IIB. Phase IIA is
specifically designed to assess dosing requirements, whereas Phase IIB is specifically
designed to study efficacy. The most commonly used sample size calculations for the
phase II designs in cancer includes Gehan’s (1960) approach or the optimal two-stage
design proposed by Simon (1988). A detailed summary of these papers will be presented in
section 1.2 and 1.3 respectively.

The third phase, called the Phase III trial is designed to assess the effectiveness of
the new drug or therapy and thereby its role in clinical practice by comparing it with
standard therapy or drug or in the case of new drugs with placebo. The comparison

treatment and the new treatment are referred to as arms of the trial.
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The fourth phase, called Phase IV is in fact post clinical research mainly concerned
with marketability of the new treatment or drug. This is a long term surveillance of an
intervention and does not involve control groups.

The focus of this thesis is on the phase II part of the clinical trials applied in cancer
research, in which the trials need to be powered to estimate the response rate in tumor
‘subtypes’ through the application of ‘predictive markers’. A formal definition of a subtype
and an explanation of a predictive marker are provided in section 1.5. A review of sample
size estimation and a review of use of subtype analysis in cancer trials are provided in the

next section.

1.2. Sample Size for Phase II and Follow-Up Clinical Trials

Gehan (1960) describes a Phase II design and provides the number of patients to be
used in the phase II trials under two scenarios. The first scenario is a simple case in which
the trial is designed to estimate a specified response rate given a rejection error. The
response rate specified to be of interest may arise from the researchers’ experience or from
past trials. The rejection error corresponds to incorrectly rejecting the response rate to be
less than the specified rate. This rejection error is usually set at 5%. This scenario is
primarily to decide whether or not a drug shows any biological activity to a particular drug
leading to a minimum effectiveness so as to proceed to a larger trial. The second scenario
involves, in addition to the parameters above, a precision within which a researcher wishes
to estimate the response rate. In this scenario, depending on the precision specified, the

sample size needed may increase considerably.
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As an example, a researcher may specify that a drug must have some minimal level
of activity, say in 20% of the patients. If the estimated activity level from a trial involving
a small number of patients is less than 20%, she/he may choose not to consider this drug
any further. If the estimated activity level exceeds 20%, she/he may want to study more
patients to get a better estimate of the response rate (the number of patients required
depends on the number of successes in the first stage). A typical study for ruling out a 20%
or lower response rate with 5% rejection error enters 14 patients. If no response is observed
in these 14 patients the drug is considered not likely to have a 20% or higher activity level
and therefore the trial ends. This is because, failure in 14 consecutive patients would
happen 5% or less times if the drug were truly effective 20% or more of the time. This can
be established by considering response as a success and a non-response as a failure in a
binomial trial with success probability equal to the specified response rate of interest. The
number of patients required in the first stage (7 ) according to the specified response rate
(p) can be found by using the exact binomial probability. That is, one could find n with 5%
rejection error and a response rate (p) using

r—1

P(x<r)=Y -x‘(Tni;pr(l—p)n_x <0.5, (1.1)
Sox! !

where r is number of successes.

Usually r is set at 1, which yields a simplified version of the above equation,

P(x<D)=p (1-p)l<os.
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The number of additional patients required for the follow-up trial depends on the
degree of precision required, which could be specified in terms of the standard error. Since
some information on the response rate is available from the first scenario, Gehan suggests
using the upper 75% confidence limit as the specified response rate. This is an
improvement over the response rate specified by the researcher at the beginning of the
trial, because it incorporates the information regarding the number of successes in the first
stage. Now, using this estimated response rate ( p ) and a desired precision ( p,),

the sample size for the second scenario is calculated by the following formulae

n
To illustrate this, considering 20% response rate with 10% rejection error, 11
patients are needed for the phase 1. Suppose 1 success is observed out of 11 trials. The
upper 75% confidence limit is found for the precision found from the above formulae

using the response rate p =1/11, which turns out to be 0.1906. Now, using this upper limit
as the response rate p in the above equation (1.2) again with specified precision of 5%

gives the required number for the follow-up trial to be 71. Thus, one can conclude that one
may need 60 additional patients for the follow-up trial to satisfy the precision required. On
the other hand, if there were 2 out of 11 successes, it can be shown that 78 additional
patients are required for the follow-up trial to satisfy the required precision. Therefore the
additional information from the first stage is essential in the calculation of sample size
needed in the second stage. Sample size increases up to 50% of observed success and it

starts decreasing beyond that. This happens because of the nature of binomial distribution.
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This design could be extended as an optimal design in the sense that the expected
size is minimized if the regimen has low activity, subject to constraints upon the size of

type I and type Il errors. This design due to Simon (1988) is next summarized.

1.3 Optimal II stage design for Phase II Trials

Simon (1988) develops the design to estimate the sample size of phase II trials
based on testing a null hypothesis H(: P <Ry that the true response probability is less
than an uninteresting probability level Ry. This hypothesis is tested at significance level of
a to conclude that the drug is accepted for further study. If H() is rejected, the new
alternative hypothesis H1: P > A for some H is considered. If /] is true, then the

probability of rejecting the drug for further trial is set to be less than f. Essentially, a and B
are type I and type II errors of hypothesis testing. Unlike Gehan, Simon uses hypothesis
tests rather than confidence interval for the precision and applies the calculations of exact
binomial probability.

The two-stage design considers the expected sample size (EN) to be n;+ (1-PET)

ny, where nj and nj are the numbers of patients studied in stages I and II, respectively.

Here, PET is probability of early termination after stage I, which is based on the number of

responses observed over the first nj patients. The EN and PET depend on true probability

of response p. The trial is considered ineffective at the end of stage I and the drug is

rejected, if 7 or fewer responses are observed, where PET is equated to B(r; p,nj), and B

denotes the cumulative binomial distribution. That is,
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n! . 3
PET =B(n; p,n) = Pr(XSn)=Z.—,—1—.,p’(1—p>”1 L 13)
izoz.(nl—z).

If r or fewer responses are observed, the trial is considered ineffective and the drug
is rejected at the end of stage II. The probability of rejecting a drug given success
probability, p, is

min{ny,r}
Probability of rejecting a drug =B(n; p,np) + Z b(x; psny) B(r—x; p,ny). (1.4)
x=n+1
where b denotes the binomial probability mass function.

For specified parameters Py-Pys @ and f, the two stage design is defined as the

one that satisfies the error probability constraints a, f and minimizes the EN, given the
response probability is p 0" Here, the optimization is performed over all values ofnq, ny,
n and r.

First, n is found, starting from the lowest value, which is given by the formula,

2
p(l—p){w} : (1.5)
(py-Pgy)

where p = (pg + p1)/2. Now keeping n fixed, n] can be searched within the range
(1, n-1). For each value of total sample size n and each value of nj in the range (1, n-1),
the integer values of 7 and r are determined, that satisfy two constraints o,  and minimize
the expected sample size when p = p(. 7 can be ranged between (0, n;). For each value of

n the maximum value of r is determined that satisfies type II constraints. That is, value of
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equation (1.4) is at least 1-B. Then the set of parameters (ny,ny,n, r) are examined to

check the whether they satisfy the type I constraint. That is, the value of equation (1.4) is at

the most a. If it does, then the EN is compared and the minimum value can be determined.
The optimization criterion chosen here is not unique. One could minimize the

expected sample size averaged with regard to a prior distribution for the true response

probability p.

1.4 Evaluating the Efficiency of Targeted Designs

Simon and Maitournam (2004) propose a design for evaluating the efficiency of
targeted designs for randomized clinical trials. They also study the efficiency of targeted
designs in comparison with traditional randomized design. For targeted and untargeted
design, the comparison of a control versus a new experimental treatment with the same
number of randomized patients in two groups is considered. The efficiency is evaluated
with regard to number of patients required for randomization and number required for
screening in the context of a binary outcome such as survival or time-to-progression end
points.

According to their notation specifications, R+ is the population of patients who are
predicted to be responsive to the new treatment and R- is the remaining population. The

D¢ 1s the response probability in control group, p. + () is the response probability in
treatment group for patients in R- and p. + 9] is the response probability in treatment

group for R+ patients. Let p,be the overall response probability for experimental
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treatment group and peT = pe + 0] be the response probability for experimental treatment
group in targeted design. The hypothesis of interest is H() : p, = p,. Also, let n and n’

denote the number of patients required to randomize in untargeted and targeted designs,

respectively, to achieve the same statistical power for testing H(). The relative efficiency

of untargeted and targeted designs can be expressed in the form:

2
T_ 1
n/n [&50+(1—R_)51} s (1.6)

They consider the two scenarios when R- patients do not benefit from the new

treatment (S = 0: case 1) and R- patients benefit half as much as the R+ patients
(6p=9)/2: case ii). For both the scenarios, considering the response probability for control
group, p.to be equal to 0.1 or 0.5 and the improvement in the response probability for R+
patients, J]to be equal to 0.2 or 0.4 with o =0.025, f= 0.2, they conclude that when the

new treatment benefits only a subset of patients and those patients can be accurately
identified, the targeted design required fewer randomized patients than the untargeted
design (ratio>1 in the equation 1.6). However, the advantage of the targeted design is much
greater for case i compared to case ii. The degree of reduction depends heavily on the
availability of an assay for identifying all patients who will benefit from the new treatment
and the prevalence of such patients. They do not provide methods for calculating sample

sizes for designing such targeted designs.
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1.5 Introduction to Subtype and Targeted Designs

Cancer therapy often is found to be effective only for a subset of treated
patients. If the tumors of patients enrolled are homogeneous with respect to a specific
characteristic, then almost all of the tumors of that type are likely to respond in a similar
manner to the drug of interest, therapy or regimen. However, if the patients are
heterogeneous (say, have different mutations of a gene or different types of melanoma,
etc.), the treatment response may vary with respect to the patients characteristics. If the
patients’ characteristics, which are called ‘predictive markers’, could be determined and
the patients could be categorized into known ‘subtypes’ it may be possible to target the
trials to specifically estimate the response rates in the subtypes. The Phase II clinical trials
that are designed to study the responses in such homogeneous subtype populations are
called targeted designs (Simon, 2004). In the next section, examples of subtype are

provided.

1.6 Mutation in EGFR and responsiveness of lung cancer to Gefitinib

Lynch et al. (2004) present a study designed to evaluate the effectiveness of
gefitinib for treating the tumor of non-small-cell lung cancer. A total of 275 patients with
advanced, chemotherapy-refractory non-small-cell lung cancer were treated with gefinitib
as a single agent since 2000 at Massachusetts General Hospital. Out of these, 25 patients
were identified by physicians as having clinically significant responses to the drug. Thus

most of the patients with non-small-cell lung cancer showed no response to the gefitinib. It
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was also found that those who responded 10 percent patients (25 out of 275) showed a
rapid and dramatic clinical response to gefitinib. If one seeks the typical response rate of
interest in phase II trials of 20%, and designed this trial using the Gehan’s approach
described in section 1.2 the trial may have not proceeded after the first 14 patients. This is
because; the probability of observing no successes out of 14, when the response rate is

10% is 23%, which is larger than usually accepted 5% rejection error.

Although the study led to only a small number of successes, the authors study the
responders further with the intention to test the hypothesis that gefitinib might target the
epidermal growth factor receptor (EGFR). In other words, their hypothesis is that the
patients with non-small-cell lung cancer who have striking responses to gefitinib had
somatic mutations in EGFR gene, which would indicate the essential role of the EGFR
signaling pathway in the tumor response. Therefore, they searched for mutations in the
EGFR gene in primary tumors from a subset of patients with non-small-cell lung cancer
who had responded to gefitinib and a sample of those who did not respond. Also, to
estimate the prevalence of EGFR mutations, they tested tumor patients who have not been

exposed to gefitinib.

Out of the 25 responders tumor specimens were available only for nine patients.
These nine patients responded substantially to gefitinib therapy. When tested, somatic
mutations were identified in the EGFR gene in eight of the nine patients, while no
mutations were observed in a sample of seven patients with non-small-cell lung cancer

who did not respond to gefinitib (Table 1). They use the Fisher’s exact test to establish
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statistical significance at a p-value of 0.001. Next they studied 25 patients with primary
non-small-cell lung cancer, who have not been exposed to gefitinib, to estimate the
prevalence. The EGFR mutations were detected in two tumors out of 25. Therefore the
prevalence is estimated as 8% (with a standard error of + 5.4%). They also mentioned that
these two patients had heterozygous mutations. They also reported that there were no
mutations among 95 primary tumors and 108 cancer-derived cell lines, which represented
diverse tumor types. This suggests that only a subgroup of cancers patients, namely non-
small-cell lung cancer patients, showed EGFR mutations and these may be variability in

the mutations.

Table 1: EGFR mutations and Response to Gefitinib

R+ R- Total
EGFR Mutation (+) 8 0 8
EGFR Mutation (-) 1 7 8
Total 9 7 16

R+=Response to gefitinib and R-= No Response to gefitinib

In summary, they conclude, only a subgroup of patients with non-small-cell lung
cancer who have specific mutations in the EGFR gene, which correlate with clinical
responsiveness to gefitinib, would respond to gefitinib. Therefore they propose screening

for such mutations in lung cancers to identify patients who would respond to gefitinib.
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The trial was not designed as a prospective study to examine the response to
gefitinib in the EGFR subtype. Instead, the authors perform this retrospectively. Since a
large number of patients were included in the trial and since they identified somatic
mutations in the EGFR gene in a preponderantly many responders (eight out of nine or 89
%) the question of power did not arise. In addition they found no EGFR mutations in the
sample of non-responders (zero out of 7). Adding further to the power of the test, in
general, one may not be so serendipitous and therefore if such subtypes are anticipated one

should design the trials to adequately study the response rate among them.

1.7 Somatic activation of KIT distinct subtypes of melanoma

This article has been provided by Curtin et al. (2006), which studies melanoma and
presented here as an example of other cancers, where subtypes are present. In this article
there is no treatment and no phase II study is proposed. In general, the melanoma is
categorized into four groups based on sun exposure and anatomic site namely Chronic sun
exposure with damage (CSD) (e.g., face), intermittent sun exposure without damage (acral)
(e.g., trunks, arms, legs), Minimal sun exposure (Non CSD) (e.g., soles, palms) and
protected from sun (mucosal) (e.g., mucosal membranes).

They hypothesize that mutations or multiple copies of KIT may affect a protein
called MAP. Also, mutations occur in genes NRAS or BRAF or NRAS with KIT or BRAF
with KIT. They notice that mutations in NRAS and BRAF do not occur simultaneously and
therefore do not consider KIT in combination with both. Mutations in KIT are more likely

to occur in acral, mucosal melanomas and CSD but do not occur in Non CSD. Mutations
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in BRAF gene are highly prevalent (59%) in Non CSD melanomas, while mutations in

BRAF occur significantly less frequently on mucosal melanomas and on CSD melanomas.

They analyzed DNA specific to melanoma subtypes where mutations in BRAF and
NRAS are infrequent among 102 primary melanomas (38 from mucosa, 28 from acral skin,
and 18 from CSD and 18 from Non CSD). They use two tailed Mann — Whitney U test to
compare KIT antibody expression levels between melanomas with K/7 mutations or
melanomas without such mutations in which P—values less than 0.05 were regarded as
significant. Mutations in K/T were found in three of seven tumors. Examination of all 102
primary melanomas found mutations and/or copy number increases of KIT in 39% of
mucosal, 36% of acral, and 28% of melanomas on CSD, but not in any (0%) melanomas
on non CSD. Eleven out of 14 (79%) of mutations with KIT mutations and eight of 15

(53%) with multiple copies of KIT demonstrated increased KI7T protein levels.

They conclude that K/T is an important gene in melanoma. Thus there are different
subtypes of melanoma. A treatment may work on some subtypes but may not on all
subtypes. Because the majority of the K/7 mutations were found in melanoma also occurs
in imatinib-responsive cancers of other types, imatinib may offer an immediate therapeutic
benefit for a melanoma. In order to design a trial to study this, a phase II trial that has

enough sample size is desirable. This will be addressed in chapter 2.
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1.8 Other related study designs:

There are numerous articles on the existence of subtypes and statistical methods for
designing targeted trials. One of them is provided by Freidlin and Simon (2005). They
propose an adaptive design that prospectively combines the development of a classifier
based on gene expression to select sensitive patients to test the overall effect with a proper
power. To address a question whether addition of a new targeted agent to the standard
treatment is beneficial, a phase III clinical trial is conducted where patients are randomly
assigned to experimental group (which consists of combination of new and standard
treatment) and control group (which consists of standard treatment alone). Performance of
the adaptive design, relative to the more traditional design, is evaluated in a simulation
study. It is shown that when the proportion of patients sensitive to the new drug is low, the
adaptive design is shown to substantially reduce the chance of false rejection of effective
new treatments. When the new treatment is broadly effective, the adaptive design seems to
have adequate power to detect the overall effect similar to the traditional design. They
conclude that development of a gene expression—based classifier to identify the‘ subset of
sensitive patients can be prospectively incorporated into a randomized phase III design
without compromising the ability to detect an overall effect. Pusztai et al., (2007) provided
the limitations and their alternatives of pharmacogenomic predictors in phase II clinical

trials.



CHAPTER 2 Sample Size for Phase II Design

2.1 Introduction to targeted design within classical phase II trial

In cancer research, a classical phase II trial design assumes a patient population
with a homogeneous tumor type and aims to estimate the probability that a patient’s tumor
will respond to a particular drug. If the homogeneity of tumor holds, the measurement of
the outcome (response or non-response) is an exercise involving only a few patients. The
phase II trial design focuses on optimizing cost by minimizing the numbers of patients
treated.

In Chapter 1 several examples of subtype were presented. In those examples, the
number of tumors with the subtype form a sample design constructed for a traditional
phase II trial may not yield adequate power or precision. Therefore, phase II clinical trials
that are targeted to prospectively study the effectiveness of the treatments in the subtypes,
extensions of the traditional designs should be considered. To design such trials, ideally the
subtype information would be desirable from all the treated individuals. But due to cost,
often the subtype information is obtained only for the responders. However, the prevalence
of the subtype in the affected population may be available. A method for computing
sample size under these circumstances is proposed below for this purpose. Here estimation

of a specified response rate in subtypes is a desirable quantity.

16
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2.2 Methods

In this section, the methods for obtaining sample sizes for different scenarios that
might arise in targeted Phase II trials are described. In these scenarios it is assumed that the
status of the subtype will be determined only for the responders. (The case in which the
entire sample of treated patients is examined for the subtype will be discussed later in
section four)

The primary goal here is to determine the number of responders needed to estimate
the proportion of responders in any given subtype of interest and subsequently to
determine the total number of patients needed given an expected total response rate. In
standard phase II trials (one-stage or two-stage) the total sample size needed is determined

only as a function of the expected total response rate, say p,- along with an acceptable

rejection error. Sometimes the required precision (width of the confidence interval) is

given along with rejection error, within which one wants to estimate p,.. Sometimes it

might be of interest to test the hypothesis on the response rate on the subtype with required
precision and from which to derive the total sample size. For all of these scenarios,
according to the given specifications and the sample size, a certain number of responses
are expected. If the trial produces fewer than the expected number of responses the
treatment is considered ineffective. The method proposed here first determines the number
of responses needed to estimate the subtype response rate with the specified precision and

adequately test hypotheses on the subtype from which the total sample size is derived.
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Before describing the methodology, some notations are introduced. Let the total
sample size (e.g., the total number of melanoma patients receiving the treatment

irrespective of subtype status) be denoted by N. Let n,- denote the number of patients

responding to the treatment (e.g., responding to Gefinitib). Let » be the number of patients
with the subtype among the responders (e.g., patients with EGFR mutation among those
responding to Gefitinib). Let the prevalence of the subtype in the population of affected

individuals be denoted by Py, which will be assumed to be known or the minimum
acceptable is specified. Let the conditional probability of response to a treatment given that
the individual is in the subtype be denoted by §,. . That is,
6, =P (Response | Subtype).
Let pgbe the conditional probability of subtype given the number of responders. That is,
ps = P (subtype | responders).

In targeted phase II trials, the subtype information is only obtained among the

responders, as mentioned earlier, and often the expected response rate 6, is specified.

Using the definition of conditional probability, the joint probability that a patient with

tumor will respond and have the subtype is,

P(subtype and responder) = P(subtype |responder) P(responder) = pg p,-.

Since the number of responders with the subtype and without the subtype and the

non responders form a mutually exclusive group and since the total number of patients, N
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can fall into either one of these three categories, r,n,. —r or N — n,. follow a multinomial
distribution with cell probabilities ps p;-, p-(1- pg)and 1- p,.. That is,

(r,n, —r,N —n,.) ~ Multinomial(N, pg py, pr-(1- pg),1- p;)

Note that »+n, —r+ N —n, = Nand pgp, + p-(1- pg)+1- p, =1, as required by
the multinomial distribution. Although the distributions are defined in terms of pgand p,.,
the investigator often specifies ;. , as mentioned above. Therefore a derivation of 8., as
shown below, in terms of the parameters in the multinomial distribution is necessary.
6,- = Probability of responders in a subtype
= P (Response | Subtype)

_ P (Subtype and Response)
P (Subtype)

_ PsPr
= £sfr 2.1
Py -

Now, the specifications of the design, such as the precision or effect sizes in the
tests of hypotheses could be restated in terms of the parameters of the multinomial

distribution. This can be achieved by rewriting for given8,., P and p,

6P,
Pr

2.2)
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2.3 Five Scenarios of interest
2.3.1 The response rate in the total population is specified

In this scenario detecting a sample size for specified response rate in the total
sample size is of interest. This case is exactly the same as the traditional case but included
here for completeness. The subtype information is not necessary. The number of patients

responding to the treatment n,. can be shown to follow a marginal binomial distribution.
That is, n, ~ binomial(N, p,) . The number of patients required for a specified trial of a

new agent for therapeutic effectiveness in the total population, for a given rejection error,
can be found using exact binomial probability as prescribed by Gehan (1961, Table 1).

That is, given the response rate in the total population ( p,- ) and rejection error (« ) the

required number of patients can be found by solving for N using

"‘1
V)= —————_ Pr — Pr > .

where r is number of successes, which is usually set at 1.

2.3.2 The response rate in the total population is specified with precision

In this scenario detecting a sample size for specified response rate with required
precision in the total sample size is of interest. The subtype information is not necessary.
The number of patients responding to the treatment 7, can be shown to follow a marginal

binomial distribution. That is, n, ~ binomial(N, p,) . The number of patients required for

a specified trial of a new agent for therapeutic effectiveness in the total population, for a
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given rejection error and with required precision can be found using exact binomial
probability as prescribed by Gehan (1961, Table 2), which is explained in detail in section

1.2.

2.3.3 The response rate in the Subtype is specified

In this scenario detecting a sample size for specified response rate among the
subtype is of interest. The prevalence of the subtype is assumed to be known. To design
this Phase II study the required sample size is of interest. The number of patients in the
subtype r can be shown to follow marginally a binomial distribution by summing the joint

multinomial distribution of »,n, —r, N —n,. over n,..

That is,

P(V)= % N' ( )r(P (I—P ))nr_r N_nr (2 4)
e Py = NN =y TSP ST ES T P .
=

- : N—
o Pres) A= prps) T @)

This is denoted as r ~ binomial(N, p, ps) . The number of patients required for a specified

trial of a new agent for therapeutic effectiveness in the subtype for given an expected total

response rate of p,. and for a given rejection error, can be found by using exact binomial

probability as prescribed by Gehan (1961, Table 1). That is, given the response rate in the

total population ( p;- ) and rejection error (« ) the required number of patients can be found

by solving for N using
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r-1

N! _
S ——(prps) (- prps)V ¥ <a, 2.6)
=0 x!(N -=x)!

where r is number of successes, which is usually set at 1.

When only 6, and P are specified, one can calculate p, pg using

o.P.
PrPs = Pr 5 = O b . (2.7)
Dy

2.3.4 The response rate in subtype is specified with desired precision

In this scenario detecting a sample size for specified response rate with desired
precision among the subtype is of interest. The prevalence of the subtype is assumed to be
known. To design this Phase II study the required sample size needs to be provided. As
mentioned in scenario 3 the number of patients in the subtype » can be shown to follow
marginally a binomial distribution by summing the joint multinomial distribution of
r,hy —r,N —n, over n,.

This is denoted as r ~ binomial(N, p, p¢). The number of patients required for a

specified trial of a new agent for therapeutic effectiveness in the subtype for given an

expected total response rate of p;. and for a given rejection error, can be found by using

exact binomial probability as prescribed by Gehan (1961, Table 2), which is explained in

detail in section 1.2. When only 6, and F; are specified, we use

o,.P.
PyDPs = DPr s =0,F.
-
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2.3.5 Test the hypothesis on the specified subtype response rate

This scenario deals with the case when the expected response rate in subtype (6,.)
and in the entire population ( p, ) are expected to be different. In other words the

hypothesis of interest is to examine if the expected response rate in subtype is greater than
that of the total population. This could be also stated in terms of null and alternative

hypotheses regarding the subtype of interest, respectively as follows:
Ho1:0r < pr,
Hg1:6p > py.
In order to test this hypothesis the subtype status of the entire sample is desirable.
However, it is often possible to test the subtype status of only the n, responders and not to
test all the NV individuals. Consequently, the estimation of 8, is not feasible. Therefore, the

determination of the sample sizes for this scenario will be formulated in terms of
hypotheses on the conditional probability of an individual being in the subtype given that

the individual is a responder, denoted by pg. Also, the prevalence P of the subtype among
the tumor population will be assumed to be known or minimum £ of interest will be
specified. Then, if the alternate hypothesis H ;1 above is true, pgwould be greater than the
prevalence P . So, the hypotheses regarding 6, and p, could be formulated as

Ho: ps <k,

Hgy: ps > K.
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Under this setup the sample size problem reduces to translating the desired

magnitude of the effect specified in terms of difference between 6, and p, into a
magnitude specified in terms of the difference between pgand £ .

Consider the following 2 x 2 table in which the rows represent whether or not an
individual is in the subtype and the columns represent whether or not an individual

responds to treatment. The corresponding cell probabilities and frequencies are shown in

the table.

Table 2: 2x2 table of response and subtype

Response

Subtype Yes No Total
Yes R ng—r P

Ps» O 1-6, ng
No ny —r N-ng-n. +r|1-F

1 - ps N- ng
Total Dy 1-p, 1

ny N- n, N

Suppose, under H ;1 , a difference A] = 6, — p, is specified for the power (sample
size) calculations. As discussed earlier, since 6, is inestimable the problem will be
reformulated in terms of Ay = py — F..

Notice,

A1 =6, —py
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=%s—1 — DPr
=(m11-prFs)/ By,
where 711 is the joint probability of responders and subtype, namely p, py .
Similarly,
Ay =ps—Fs

=(m11-prE)/ by

Solving for A; using the above two equations yields,

P,
Ay =ps—FPi=A p—s (2.8)
r

Thus, given P, p, and Aj=6,. — p, one can easily determine Aj using equation
(2.7). Subsequently the sample size n,. can be determined using the conditional distribution
of r given n, for testing H(p for specified significance level a and power, 1 - B. That is

using,

P(",nr;N)

P(r|ny)= P(n)
»

~ binomial ( pg,n; ). (2.9

Once n, is determined the total sample size N can be estimated by using marginal
distribution ofn,. , which is a binomial ( p,-, N). Given an expected total response rate,
py of interest, the number of responses needed above (i.e., n, ) and a rejection error, the

total sample size N could be calculated using Gehan (1961). Expanding Gehan’s approach

for r successes, the equation can be written as,
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ny—1 N
Y ———p (-p) <a. (2.10)
=0 x!(N -x)!



CHAPTER 3 Sample Size Tables for the Targeted Phase II trials

In this chapter tables of sample sizes for various combinations of
prevalence, response rate in total population as well as in subtype are provided for all

possible scenarios.

3.1 Sample sizes for scenarios 1 and 2
In scenario 1, the expected response rate in the total population of tumor patients

( py) is specified. The sample sizes for the typical response rates, namely, p, =0.05,0.1,

0.15, 0.2, 0.25, 0.3 and 0.35 assuming 5% and 10% rejection errors are calculated. Since
this situation is identical to the usual Phase II trials, these values are identical to the tables
provided by Gehan (1961, Table 1). To obtain this for any response rate and any rejection
errors a SAS program is provided.

In scenario 2, in addition to the expected response rate a required precision must
also be specified. The required sample sizes for the values of p,- mentioned above in
scenario 1, for 5% and 10% precisions and 5% and 10% rejection error are provided. For
scenario 2 these values are recalculated from tables provided by Gehan (1961, Table 2).
SAS program is provided for this scenario to find sample size for any required precision

and any response rate with any rejection errors.

27
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In scenario 1 if there are no responses (that is, at least one response is not observed)
in the sample, the trial will be terminated. This is true also in scenario 2. That is, if no
responses in the number of trials mentioned under scenario 1 are observed the trial will
terminate and will not accrue the additional patients required under scenario 2. Therefore,
whether one is in scenario 1 or 2 the sample sizes needed under scenario 1 is essential.

Therefore the sample sizes for scenario 1 and 2 are provided together in Table 3 below.

Table 3: Sample size for scenario 1 and 2

Scenario 2 Scenario 2
Pr
Scenario 1| (5% precion) |(10% precion)
Rejection Error=5%
0.05 59 59 59
0.1 29 33 29
0.15 19 48 19
0.2 14 61 16
0.25 11 72 18
0.3 9 82 21
0.35 7 93 24
ejection Error=10%
0.05 45 45 45
0.1 22 42 22
0.15 15 58 15
0.2 11 72 18
0.25 9 82 21
0.3 7 93 24
0.35 6 98 25

For example, if the expected response rate is 20% and the rejection error is 5% the trial

will stop if no responses are observed in the first 14 patients. If the trial proceeds and one
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also requires 5% precision the trial will require a total of 59 patients. That is, it will require

an additional 45 patients.

Figure 1: Sample size as a function of p, for Scenario 2
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The figure 3.1 represents the total sample size as a function of p,. . The figure

indicates that the sample size increases linearly for response rates larger than 10% while it
is quadratic on the whole if the 5% case is included. This is because; the standard errors of
5%, 10% and 20% at rejection error of 0.05 for example, are 0.0002, 0.0015 and 0.0008,
which is quadratic.

Program 3.1: SAS codes for scenario 1

$macro tablel (pr,re);

data x;

Re=é&re;

Pr = &pr;

do i =1 to 100 until (flag);
n = (l-pr)**i;

if n < &re then do;

flag=1l;
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flag=1;
Nl = i;
output;
end;
end;
run;

proc print data=x noons;

var Re Pr N1;

title ' The Required Sample Size for Scenario 1';
run;

$mend;

$tablel (.35, .05);

run;

In the above program the inputs pr and re correspond response rate in total
population and rejection error respectively. If one specifies the response rate in the total

population ( p;- ) and rejection error, the program will provide the required sample size.
The output is provided below as an example, where p, =0.35 and rejection error 95% are

specified. The required sample size comes out to be 7 from the above program.

Table 4: Sample size for scenario 1

The Required Sample Size for Scenario 1

Re Pr N1

0.05 035 7
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Program 3.2: SAS codes for scenario 2

$macro table?2 (pr,re,os,prec);

data x;

Pr = &pr;

Re=é&re;

Observed Success=&0s;

Precision=é&prec;

do i =1 to 100 until (flag);

n = (1-Pr)**i;

if n < &re then do;

flag=1;

N1 = i;

output;

end;

end;

pl = &os/nl;

sel = sqrt(pl*(1-pl)/nl);
phatl = pl + 1.64*sel;
N2 = int ((phatl* (l-phatl)/&prec**2)) + 1;

output;
run;
data x;
set Xx;
if N2 = . then delete;
run;

proc print data=x noobs;

var Re Pr Observed Success Precision N1 N2;

title ' The Required Sample Size for Scenario 2';
run;

$mend;

$table2(.05,.05,1, .05) ;run;

In the above program the inputs pr, re, os and prec correspond response rate in the
total population, rejection error, observed success and precision respectively. If one
specifies the response rate in the total population ( p,. ), rejection error, required precision
and the observed success the program will provide the required sample size. This program

also provides the sample size for more than 1 success. The output is provided below as an
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example, where p,-=0.05 and rejection error 95%, with 5% precision and 1 observed

success are specified. The required sample size comes out to be 59 for scenario 1 and 18

for scenario 2 (if at-least 1 success is observed in scenario 1) from the above program.

Table 5: Sample size for scenario 2

The Required Sample Size for Scenario 2

Re Pr Observed_Success Precision N1 N2

0.05 0.05 1 0.05 59 18

3.2 Sample Sizes for Scenarios 3 and 4

In scenario 3, the expected response rate in the subtype of tumor patients (6, ) and
the subtype prevalence ( P ) are specified. The sample size for the typical response rates,
namely 6, =0.3,0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65 and 0.7 assuming 5% and 10%
rejection error with subtype prevalence P;=0.2. Some of these values are identical to the
tables provided by Gehan (1961, Table 1) using p,. ps instead of p, (unlike in scenario
1), from the equation 2.1. That is,

Prps = OpFs
The SAS program (3.3) provided below for this scenario finds sample size for any

response rate in the subtype, for any subtype prevalence and with any rejection errors.
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In scenario 4, in addition to the expected response rate in the subtype and the
subtype prevalence a required precision is also specified. The required sample size for the

values of 6, and P; mentioned above in scenario 3, sample size has been constructed for
scenario 4 using P =0.2 and the same 6, as in scenario: 3, for 5% and 10% precisions and

5% and 10% rejection error were calculated.
These values are recalculated using the technique provided by Gehan (1961, Table

2) using p, ps instead of p, (unlike in scenario 1), form the equation 2.1. That is,

Prps =0,F

The SAS program (3.4) provided below for this scenario finds sample size for any
response rate in the subtype, for any subtype prevalence including any required precision
and with any rejection errors.

In scenario 3 if there are no responses (that is, at least one response is not observed)
in the subtype, the trial will be terminated. This is true also in scenario 4. That is, if no
responses in the number of trials mentioned under scenario 3 are observed the trial will
terminate and will not accrue the additional patients required under scenario 4. Therefore,
whether one is in scenario 3 or 4 the sample sizes needed under scenario 3 is essential.

Therefore the sample sizes for scenario 3 and 4 are provided together in Table 4 below.
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Table 6: Sample size for scenario 3 and 4 for P =0.2

Oy Scenario 3 Scenario 4 Scenario 4
(5% Precision) |(10% Precision)
Rejection Error=5%
0.30 49 49 49
0.35 41 41 42
0.40 36 36 36
0.45 32 32 32
0.50 29 33 29
0.55 26 37 26
0.60 24 39 24
0.65 22 42 22
0.70 20 46 20
Rejection Error=10%
0.30 38 38 38
0.35 32 32 32
0.40 28 34 28
0.45 25 38 25
0.50 22 42 22
0.55 20 46 20
0.60 19 48 19
0.65 17 52 17
0.70 16 55 16

For example, if the expected response rate is 50% in the subtype and the rejection
error is 5% the trial will stop if no responses are observed in the first 29 patients. If the trial
proceeds and one also requires 5% precision the trial will require a total of 33 patients.

That is, it will require an additional 4 patients.
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Figure 2: Sample size as a function of 6, and p,.; P, =0.2 for Scenario 4

The figure above indicates that the required sample size increases linearly for
subtype response rate (6, ) larger than 45% while it is quadratic if the 35% case is
included. This is because the standard errors of 35%, 45% and 55% at 5% rejection error
for example are 0.0005, 0.0009 and 0.001. So, the sample size for the specified response
rate in the subtype is proportional to the standard error. The sample size remains constant

for different values of p,., which makes sense since the calculation of sample size involve

only p,ps as p,pg = 6, Psin the scenario 3 and 4.
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for different values of p,., which makes sense since the calculation of sample size involve

only p,ps as p,ps =6,Pin the scenario 3 and 4.

Program 3.3: SAS codes for scenario 3

%macro table3 (Theta r,prev,re);
data x;

Prevalence=&prev;

Theta r=&Theta r;

Re=é&re;

p = &Theta r*&prev;

do i =1 to 100 until (flag);

n = (l-p)**i;

if n < &re then do;
flag=1;

N1l = i;

output;

end;

end;

run;

proc print data=x noobs;

var Theta r Prevalence Re NI1;

title ' The Required Sample Size for Scenario 3';
run;

$mend;

$table3(0.35, .2, .05) ;run;

In the above program, if one specifies the response rate in the total population
( py ), rejection error and the subtype prevalence, the program will provide the required
sample size. The output is provided below as an example, where p, =0.35 and rejection

error 95% with subtype prevalence=0.2. The sample size comes out to be 42 for scenario 3

from the above program.




Table 7: Sample size for scenario 3
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The Required Sample Size for Scenario 3

Theta_r Prevalence Re N1

0.35 0.2 0.05 42

Program 3.4: SAS codes for scenario 4

$macro tabled (thetar,prev,re,os,prec);

data x;

Theta_ r=&thetar;
Prevalence=&prev;

Re=é&re;

Observed Success=&o0s;
Precision=é&prec;

p = &thetar*&prev;

do i =1 to 100 until (flag);

n = (1-p)**i;

if n < &re then do;
flag=1;

N1l = i;

output;

end;

end;

pl = &os/N1;
sel = sqrt(pl*(l-pl)/nl);
phatl = pl + 1.64*sel;

N2 = int ((phatl*(l-phatl)/&prec**2))+1;

if N2<N1 then N2=N1;
output;
run;
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data x;

set x;

if N2 = . then delete;

run;

proc print data=x noobs;

var Theta r Prevalence Re Observed Success Precision N1 N2;
title ' The Required Sample Size for Scenario 4';

|run;

$mend;

$table4(.3,.2,.05,1,.05) ;run;

—

In the above program, if one specifies the rejection error, observed success,

prevalence, precision and 8,., the program will provide the required sample size. The
output is provided below as an example, where 6,.=0.3, rejection error 95% with 1

observed success, subtype prevalence=0.2 and 10% precision. The required sample size
comes out to be 42 for scenario 3 and no more patient is needed for scenario 4 (if the study
proceed further. That is, if at-least 1 success is observed in scenario 3) from the above
program.

Table 8: Sample size for scenario 4

The Required Sample Size for Scenario 4

Theta_r Prevalence Re Observed_Success Precision N1 N2

0.3 0.2 005 1 0.05 49 49




39

3.3 Sample size for scenario 5

In this scenario, subtype prevalence (P ), response rate in the subtype (8, ) as well
as in the total population ( p, ) are specified. The number of patients responding a
treatment (n,. ), total sample size (V) and number of patients with subtype among
responders () for the typical cases when P =2, 6, =0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
and p, =0.1, 0.15, 0.2 with a;,.=5% and B=80% are calculated using the method defined in

this paper in chapter 2. To obtain this for any subtype prevalence and any response rate in
the subtype as well as in the total population for any significance level and any power, a

SAS program is provided.

Table 9: Sample size for scenario 5; for P;=0.2

Py=2
Dr Oy r ny N
0.1 0.2 11 36 469
0.1 0.3 4 10 166
0.1 0.4 2 4 88

0.15 0.2 61 254 1864
0.15 0.3 11 36 310
0.15 0.4 7 18 173
0.15 0.5 3 7 84
0.15 0.6 2 4 58
0.2 0.3 30 116 666
0.2 0.4 11 36 231
0.2 0.5 6 17 123
0.2 0.6 4 10 81
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Figure 3: Sample size as a function of 6, and p,.; P, =0.2 for scenario 5
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The figure indicates that as 6, decreases the sample size increases exponentially.

Also, as p, increases the sample size increases.

Program: 3.5 SAS codes for scenario 5

$macro table3(thetar,prev,pr,alpha,power);
data a;

Theta r=&thetar;




Program: 3.5 SAS codes for scenario 5
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$macro table3 (thetar,prev,pr,alpha,power);
data a;

Theta r=&thetar;

|Prevalence=sprev;

Pr=&pr;

Alpha=é&alpha;

Beta=é&power;

1=100;

ps=&prev;

/*do thetar=.2 to .9 by .05;

do pr=.1 to .5 by .05;*
dell=(&thetar-&pr);
del2=dell*ps/&pr;
thetas=ps+del?2;

do r=0 to 1;

N1=14+r*10;

do nr=r to N1;
bl=1-cdf('binom',r,ps,nr);
b2=1-cdf ('binom', r, thetas,nr);

retain;
output;
end;

end;
/*end;
end;

*/

run;

data b;
set a;
toll=.04;
tol2=.04;

difl=abs (bl-&alpha);

dif2=abs (b2-&power) ;

difsum=difl+dif2;

if difl > toll or dif2 > tol2 then delete;
if difsum > 0.1 then delete;

if bl < .01 or b2 <&power then delete;
if bl > &alpha then delete;

data c;

set b;

do N=nr to 3000;

b3=cdf ('binom',nr, &pr,N) ;

output;

retain;

end;

data d;

set c;

p=&pr;

theta=&thetar;
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tol3=.04;

dif3=abs (b3-&alpha);

if dif3 > tol3 then delete;

if b3 < &alpha then delete;

run;

proc sort data=d out=ds;by p theta descending bl b2 b3 ;run;
|data e;

set ds;

by p theta;

fb3=first.p;

fbl=first.theta;

run;

data £f;

set e;

if fb3 or £fbl;

proc print data=f noobs;

var Theta r Prevalence Pr Alpha Beta r nr N ;
title' The Sample Size for Scenario 5';run;*/
run;

$mend;

$table3(.3,.2,.2,.05,.8) ;run;

In the above program, if one specifies 8, , p,- ,a, [ and subtype prevalence, the
program will provide the number of patients responding treatment (#,-) and the required
total sample size (V). The output is provided below as an example, where 6, =0.3,
pr=0.2, a =95%, B=80% and subtype prevalence=0.2. n,. and N come out to be 116 and

666 respectively from the above program.

Table 10: Sample size for scenario 5

The Sample Size for Scenario 5

Theta_r Prevalence Pr Alpha Beta r nr N

0.3 0.2 0.2 0.05 0.8 30 116 666
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The more interactive and user friendly SAS program for scenario 1 and 3 are

provided in the Appendix A using the same technique prescribed in this chapter. This

program will give the same result as the SAS program provided in this chapter.

3.4 Examples of typical cases on 5 scenarios

Below is the table indicating the required sample size for the specific cases for all

five scenarios.

Table 11: Examples on 5 scenarios

I ] ] v Vv Vi VIl VI
Fy 0.1 0.1 0.1 0.2 0 0 0.3 0.1
Oy 0.5 05 | 05 | 05 | o0 0 06 | 0.6
Pr 0.05 0.1 0.25 0.1 0.05 0.1 0.3 0.3
Scenariol 59 59 59 29 1 T 16 49
Scenario2 59 29 11 29 59 29 9 9
Scenario3 59 59 59 33 1 t 55 49
Scenario4 59 29 71 33 59 29 79 79
Scenario5 1 166 372 1 59 28 80 1

Here, 1 represents the cases where sample sizes could not be determined.



CHAPTER 4 Extension as future work

All our calculations in scenarios 1 to 4 are based on a Phase II design proposed by
Gehan. Recall that when the precision is specified the sample size calculations are based
on a normal approximation. This was improved by Simon (1988), who suggests two-stage
designs in which designs are optimal in the sense that the expected size is minimized if the
regimen has low activity subject to constraints upon the size of type I and type II errors.
This design has been explained in detail in chapter 1. The scenarios 2,3 and 5 could also be
extended to the Simon two stage optimal design. This would follow the same arguments as
in the case described in chapter 2. However the scenarios have to be reformed using the
conditions set by the optimal design.

All the calculations in scenarios 1, 3 and 5 are based on the assumption that the
tumors tested for the subtype will find the subtype 100% of the time. In reality diagnostic
tests are not 100% accurate. Implementing information such as sensitivity and specificity
of the tests in the sample size calculation may be necessary.

The prevalence of the subtype is assumed to be known, which is estimated from the
sample. To estimate this with a certain precision in addition to treatment response is also of

interest.
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Study designs including multiple subtypes such as the melanoma example with
mutations on KIT are also of interest. The calculations and program need to be repeated for
various scenarios. These designs may be achieved by simply correcting for the overall
rejection error or by considering more complicated designs such as sequential designs.

Calculations and programs can be repeated for various scenarios.
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APPENDIX A

*xkkkxkkkkk*x Tnteractive codes for all Scenarios **xrxxddrrx,

$window ssize
rows=25 irow=5 color=gray
group=scenario
#1 @5 'Specify which scenario you want sample size for' +2 scenario
1
$#2 @5 '
F3 @5 T !
group=askforitl
#4 @5 'This program calculates the sample size for scenario 1.'
#5 @5 'You need to provide p r and rejection error(re)’
#6 @5 'Execute the program by pressing the ENTER key.'
#7 @5 'To end this program, press HOME and enter STOP on the command
line.'
8 @5 " !
#9 @2 'Enter the response rate p r' +2 pr 3
#10 Q@2 'Enter the rejection error (re)' +2 re 3
group=askforit?2
#6 @5 'This program calculates the sample size for scenario 2.'
#7 @5 'You need to provide p r, rejection error(re), observed
success and precision'
#8 @5 'Execute the program by pressing the ENTER key.'
#9 @5 'To end this program, press HOME and enter STOP on the command

line.'
#10 @5 '"---m oo m o !
#11 @2 'Enter the response rate p r' +2 pr 3
#12 @2 'Enter the rejection error (re)' +2 re 3

#13 @2 'Enter the precision' +2 prec 3
#14 @2 'Enter the observed number of success' +2 os 3
group=askforit3
#6 @5 'This program calculates the sample size for scenario 3.'
#7 @5 'You need to provide Theta r, Prevalence(P) and rejection
error (re)’
#8 @5 'Execute the program by pressing the ENTER key.'
#9 @5 'To end this program, press HOME and enter STOP on the command
line.'
#10 @5 '——- - !
#11 @2 'Enter the response rate among subtype (Theta r)' +2 thetar 3
#12 @2 'Enter the Prevalence of the sugtype (P)' +2 prev 3
#13 @2 'Enter the rejection error (re)' +2 re 3
group=askforit4
#6 @5 'This program calculates the sample size for scenario 4.°'
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#7 @5 'You need to provide Theta r, Prevalence(P) and rejection
error (re)'
#8 @5 'Observed number of successes and precision'
#9 @5 'Execute the program by pressing the ENTER key.'
#10 @5 'To end this program, press HOME and enter STOP on the
command line.'
#11 @5 "= mm e !
#12 @2 'Enter the response rate among subtype (Theta r)' +2 thetar 3
#13 @2 'Enter the Prevalence of the sugtype (P)' +2 prev 3
#14 @2 'Enter the rejection error (re)' +2 re 3
#15 @2 'Enter the precision' +2 prec 3
#16 @2 'Enter the observed number of success' +2 os 3
group=askforitb
#6 @5 'This program calculates the sample size for scenario 5.'
#7 @5 'You need to provide Theta r, Prevalence(P), response rate,
alpha and power'
#8 @5 'Observed number of successes and precision'
#9 @5 'Execute the program by pressing the ENTER key.'
#10 @5 'To end this program, press HOME and enter STOP on the
command line.'
$11 @5 'mmmm e e !
#12 @2 'Enter the response rate among subtype (Theta r)' +2 thetar 3
#13 @2 'Enter the Prevalence of the sugtype (P)' +2 prev 3
#14 @2 'Enter the response rate (re)' +2 pr 3
#15 @2 'Enter the significance level' +2 alpha 3
#16 @2 'Enter the power' +2 power 3
group=showtablel
#20 @2 "You need at least 1 success out of " nl +1 "to proceed"
#21 @10 "You may change the values and try again..."
group=showtable4
#20 @2 "You need at least 1 success out of " nl +1 "to proceed"
#21 @2 "If you observed" osl +1 "successes you will need" n2 +1
"total sample"
#22 @10 "You may change the values and try again..."
group=showtable?2
#20 @2 "You need at least" rl +1 "success out of " nrl +1
"responses in" nl +1 "patients”
#21 @10 "You may change the values and try again..."
group=schoscen
#23 @10 "You may change the scenario..."
group=byebye
#24 @2 " ";

$macro table3;* (thetar,prev,re);%do Swhile (%upcase (&syscmd) ne STOP);

%askhere:
$display ssize.askforit3;
%$1f &thetar<l %$then %do;
data x;

p = &thetar*&prev;

do i =1 to 100 until (flag):

n = (l-p)**i;

if n < &re then do;



flag=1l;

nl = put(i,3.0);

call symput("nl",nl);

output;

end;

end;

run;

send;

%display ssize.showtablel noinput;
$display ssize.schoscen;

$choscen;

send;

$display ssize.byebye blank noinput;

$mend table3;
$macro tablel;
$do %$while (%upcase (&syscmd) ne STOP);

%askhere:
%display ssize.askforitl;
data x;
p = &pr;
do i =1 to 100 until (flag);
n = (l-p)**i;
if n < &re then do;
flag=1;

nl = put(i,3.0);

call symput("nl",nl);

output;

end;

end;

run;

$display ssize.showtablel noinput;
%display ssize.schoscen;

%choscen;

%$end; $display ssize.byebye blank noinput;

$mend tablel;
$macro table2;
%$do %while (%upcase (&syscmd) ne STOP);
$askhere:
$display ssize.askforit2;
data x;
p = &pr;
do i =1 to 100 until (flag);
n = (l-p)**i; * chance of consecutive treatment
patients;
if n < &re then do;
flag=1;
nl = put(i,3.0);
call symput("nl",nl);
output;
end;
end;
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pl = &os/nl;
sel = sqgrt(pl*(1-pl)/nl);
phatl = pl + 1.64*sel;

new sel = (phatl*(l-phatl)/&prec**2);
if new_sel<nl then new sel=nl;
output;

run;

data b;

set Xx;

osl = put(&os,3.0);

call symput("osl",osl);

n2 = put(new_sel,3.0);

call symput("n2",n2);

run;

$display ssize.showtable4 noinput;
$display ssize.schoscen;

$choscen;

%end; $display ssize.byebye blank noinput;

$mend table2;
$macro table4;
%do %while (%upcase (&syscmd) ne STOP);
%askhere:
$display ssize.askforit4;
data x;
p = &thetar*&prev;
do i =1 to 100 until (flag):;

n = (1-p)**i; * chance of consecutive treatment
patients;

if n < &re then do;

flag=1;

nl = put(i,3.0);

call symput("nl",nl);

output;

end;

end;

pl = &os/nl;

sel = sqrt(pl*(l-pl)/nl);
phatl = pl + 1.64*sel;
new sel = (phatl*(l-phatl)/&prec**2);
if new_sel<nl then new sel=nl;

output;

run;

data b;

set x;

osl = put(&o0s,3.0);

call symput ("osl",osl);

n2 = put(new_sel,3.0);

call symput("n2",n2);

run;

%$display ssize.showtable4 noinput;
$display ssize.schoscen;
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$choscen;
%end; $display ssize.byebye blank noinput;
$mend tabled;
$macro table5;
%do %while (%upcase (&syscmd) ne STOP);
%askhere:

$display ssize.askforith;

data a;

1=100;

ps=&prev;

/*do thetar=.2 to .9 by .05;
do pr=.1 to .5 by .05;*/

dell=(&thetar-&pr);
del2=dell*ps/&pr;
thetas=ps+del?2;

do r=0 to 1;

N1=14+r*10;

do nr=r to N1;
bl=1-cdf('binom', r,ps,nr);
b2=1-cdf('binom', r,thetas,nr);
retain;

output;

end;

end;

/*end;

end;

x/

run;

data b;

set ay;

toll=.04;

tol2=.04;

difl=abs(bl-&alpha);

dif2=abs (b2-&power) ;
difsum=difl+dif2;

if difl > toll or dif2 > tol2 then delete;
if difsum > 0.1 then delete;
if bl < .01 or b2 <&power then delete;
if bl > &alpha then delete;
data c;

set b;

do N=nr to 3000;
b3=cdf('binom',nr, &pxr,N);
output;

retain;

end;

data d;

set c;

p=&pr;

theta=&thetar;

tol3=.04;
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dif3=abs (b3-&alpha);

if dif3 > tol3 then delete;

if b3 < galpha then delete;

run;

proc sort data=d out=ds;by p theta descending bl b2
data e:

set ds;

by p theta;

fb3=first.p;

fbl=first.theta;

run;

data f;

set e;

if fb3 or fbl:
run;

data k;

set f;

N1l = put(N,3.0);

nrl=put (nr,3.0);

rl=put(r,3.0);

call symput("nl",nl);

call symput ("nrl",nrl);

call symput("rl",rl);

run;

%display ssize.showtable2 noinput;
%$display ssize.schoscen;

%$choscen;

%end; $display ssize.byebye blank noinput;
$mend table5;

$macro choscen;

%$do %$while (%upcase (&syscmd) ne STOP);
$display ssize.scenario blank;

$if &scenario = 1 %then

%tablel;

$else

$if &scenario = 2 %then

% table2;

%else

%$1if &scenario = %$then

Stable3;
%else

%1if &scenario
Stabled;
%else
%tableb5;
%$end;

$then

$mend choscen;
%$choscen;

b3

;run;
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